SIMPLE = T / file does conform to FITS standard BITPIX = 16 / number of bits per data pixel NAXIS = 0 / number of data axes EXTEND = T / FITS dataset may contain extensions COMMENT FITS (Flexible Image Transport System) format is defined in 'AstronomyCOMMENT and Astrophysics', volume 376, page 359; bibcode: 2001A&A...376..359H END XTENSION= 'BINTABLE' / binary table extension BITPIX = 8 / 8-bit bytes NAXIS = 2 / 2-dimensional binary table NAXIS1 = 8 / width of table in bytes NAXIS2 = 360 / number of rows in table PCOUNT = 10983 / size of special data area GCOUNT = 1 / one data group (required keyword) TFIELDS = 1 / number of fields in each row TTYPE1 = 'COMPRESSED_DATA' / label for field 1 TFORM1 = '1PB(104)' / data format of field: variable length array ZIMAGE = T / extension contains compressed image ZSIMPLE = T / file does conform to FITS standard ZBITPIX = 16 / data type of original image ZNAXIS = 2 / dimension of original image ZNAXIS1 = 720 / length of original image axis ZNAXIS2 = 360 / length of original image axis ZTILE1 = 720 / size of tiles to be compressed ZTILE2 = 1 / size of tiles to be compressed ZCMPTYPE= 'RICE_1 ' / compression algorithm ZNAME1 = 'BLOCKSIZE' / compression block size ZVAL1 = 32 / pixels per block ZNAME2 = 'BYTEPIX ' / bytes per pixel (1, 2, 4, or 8) ZVAL2 = 2 / bytes per pixel (1, 2, 4, or 8) CAR_ROT = 2142 / Carrington rotation HIERARCH key_syn_map = 1 / Syn Map proektion END *8FTbp~Œš¨¶ÄÒàîü &4BP^lzˆ–¤²ÀÎÜêø"0>LZhv„’ ®¼ÊØæô,:HVdr€Žœª¸ÆÔâðþ (6DR`n|Š˜¦´ÂÐÞìú$2@N\jx†”¢°¾ÌÚèö( (H,p,œBÈB BLBŽFÐFF\E¢EçE ,E qE ¶E ûX @X ˜X ðY HA ¡A âA #A dA ¥A æA 'A hA ©A êA+Fl>²>ð6.&dŠ˜¦´ÂÐÞìú$2@N\jx †7¦7Ý77K7‚7¹7ð7'7^7•7Ì70:0jDš[Þ[9\”hðRXRªDüE@+…+°+Û* 0P^lzˆ–¤²ÀÎÜêø"0>LZhv/„/³/â/.@.n.œ.Ê.ø.&/T/ƒ/²/áFFVFœFâ/(FWFFã_)_ˆ_ç_F_¥aae]Æ] #] €] Ý]!:T!—T!ëT"?e"“e"øe#]e#Â<$'<$c+$Ÿ+$Ê+$õ)% )%I)%r)%›)%Ä%í%û& &&%&3&A&O&]&k&y&‡&•&£&±&¿&Í&Û&é&÷'''!'/'='K'Y'g'u'ƒ'‘'Ÿ'­'»'É'×'å'ó((((+(9(G(U(c(q(((›(©(·(Å(Ó(á(ï(ý) ))')5)C)Q)_)m){)‰)—)¥)³)Á)Ï)Ý)ë)ù***#*1*?*M*[*i*w*…*“*¡*¯*½*Ë*Ù„!B„!B„!@á„!@„!B„!B„!„!B)@‚ ‚ ‚ ‚ ‚œAAØ@‚ ‚ ‚ ‚ €<AAÜ@„!B„!B€°¼!B„„ °B„!B„!B„!B„!„!B„!B€°¼!B„„ °„„!B„!B„!B„!„!B„!B€°¼!B„„ °„!!B„!B„!B„!„!B„!B€°¼!B„„ °„!(@ô!B„!B„!B„!B„!B€¨áB„ #AaB!B!B„!B„!„!B„!B„aB„ #AaB!B€!B„!B„!„!B„!B„aB„ #AaB!B„!B„!B„!„!B„!B„ ;B„ #AaB!B„!„ÈB„!B„!B„!B„ ;B„ #AaB!B„!„ B„!B„!B„!B„ ;B„ #AaB!B„!„!Bä!B„!B„!B„ ;B„ #AaB!B„!„!B!B„!B„!B„ ;B„ #AaB!B„!„!B€ô! „!B„!B„ ;B„ #AaB!B„!„!B€ô!<„!B„!B„!ØB„ #AaB!B„!„!B€ô!A" tDDDDDDDDDDDDD@„!B„!B„!„ #AaB!B„!„!B€ô!A""@dDDDDDDDDDDDD@„!B„!B„!B„ #AaB!B„!„!B€ô!A""PDDDDDDDDDDDD@„!B„!B„!B„ @8B B€#B„!¡B„ Є!ˆˆÑ興ˆˆˆˆˆˆˆˆˆ€h0AcAAeAAú ‚ˆˆÑˆˆˆˆˆˆˆˆˆˆˆ€h ‚ cAAeAAú ‚ˆˆÑ興ˆˆˆˆˆˆˆˆ€h ‚ wAAeAAú ‚ˆˆÑ興ˆˆˆˆˆˆˆˆ€h ‚ €ÜAAeAAú ‚ˆˆÑ興ˆˆˆˆˆˆˆˆ€h ‚ €ÜAAeAAú ‚ˆˆÑˆˆˆˆˆˆˆˆˆˆˆ€h ‚ €ÜAAeAAú ‚ˆˆÑˆˆˆˆˆˆˆˆˆˆˆ€h ‚ €ÜAAeAAú ‚ˆˆÑ興ˆˆˆˆˆˆˆˆˆ€h ‚ €ÜAAeAAú ‚ˆˆÐˆˆˆˆˆˆˆˆˆˆˆˆ€h ‚ ‚pAAeAAú ‚ˆˆÑ興ˆˆˆˆˆˆˆˆˆ€h ‚ ‚ÁAeAAú ‚ˆˆÑˆˆˆˆˆˆˆˆˆˆˆ€h ‚ ‚ wAeAAú ‚ˆˆÑˆˆˆˆˆˆˆˆˆˆˆ€ˆ^À@@ú0z""¢ h ‚ ‚ ‚ ‚ ‚ 0A}ADDD¢"""""""""""h ‚ ‚ ‚ ‚ ‚ ‚c}ADD@:""""""""""""Hˆˆˆˆˆˆˆˆˆˆˆˆˆ."!"" „€`=B„!B„!B„!€¬Ú„!B„!B„!B„!BZ ‚ €Aò €„!B„!B„!B„!@¬ ‚ €AÈ €„!B„!B„!B„!@¬ ‚ €A €„!B„!B„!B„!@¬ ‚ €A@<€„!B„!B„!B„!@¬ ‚ €AAð„!B„!B„!B„!@¬ ‚ €AAð„!B„!B„!B„!@¬ ‚ €AAð„!B„!B„!B„!@¬ ‚ €AAð„!B„!B„!B„!@¬ ‚ €AAð„!B„!B„!B„!@¬ ‚ €AAð„!B„!B„!B„!@¬ ‚ €AAð„!B„!B„!B„!@¬ ‚ €AAðˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ …„!B%B€@ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ€•„!B%B€@HˆˆˆˆˆˆˆˆLDD@¢"" """"""""""""""" %aB„ B„ Hˆˆˆˆˆˆˆ€ÄDDD@¨‡Ä$DDDDDDDDDDDDDDDDDDDDDDDDDDD@J„!„!@ Hˆˆˆˆˆˆˆ€ÄDDD@¨ˆˆHˆ€Øˆˆˆˆ:""""""""""""""""""""""" %aB„ B„ Hˆˆˆˆˆˆˆ€ÄDDD@¨ˆˆHˆ€ØˆˆˆˆhdDDDDDDD@$DDDDDDDDDDDDDDD¬!B€(B„h ‚ ‚ ‚ €ì  ‚ ‚  ‚ Hˆ€ØˆˆˆˆlDDDDDDD@$DDDDDDDDDDDDDDD´AAˆÁ@h ‚ ‚ ‚ €ì  ‚ ‚  ‚ Hˆ€ØˆˆˆˆlDDDDDDD@`‚ €EA@h ‚ ‚ ‚ €ì  ‚ ‚  ‚ Hˆ€ØˆˆˆˆlDDDDDDD@A„EAA@h ‚ ‚ ‚ €ì  ‚ ‚  ‚ Hˆ€Øˆˆˆˆl@dDDDDDD@h ‚ ‚ ‚ €ì  €*‚ ` ‚ Hˆ€Øˆˆˆˆl@dDDDDDD@ÿÿüôˆˆ ˆˆˆˆ†ÄDDDDDDD*ªªªªªª QUuUPT:ªªª*ªªªªªª¨QUuUPPꪪª*ªªªªªªª€UuUPªªªª€@°y$’I$’I$’Hx @ @ä p @x @ @¹ .€>À x @ @\ .À} x @ @ @ .À€û x @ @<@ @]Ø @x @$<@ @]° @x @’<@ @]`@x @É<@ @] >Àx @É<@ @] >Àx @É<@ @] >Àx @1@ @  àx @1@ @  @3€x @b @  @3€x @Š @  @3€h ‚ ‚ €DAA@þ ‚ ‚p„!B„!B„!B„!h ‚ ‚ ‚AA@þ ‚ ‚p„!B„!B„!B„!h ‚ ‚ ‚QA@þ ‚ ‚p„!B„!B„!B„!h ‚ ‚ ‚QA@þ ‚ ‚p„!B„!B„!B„!x @ @€4@  @3€h ‚ ‚ ‚ DA@þ ‚ ‚/B„!B„!B„!B„h ‚ ‚ ‚ DA@þ ‚ ‚/B„!B„!B„!B„h ‚ ‚ ‚ €A@þ ‚ ‚/B„!B„!B„!B„‚ ‚ ‚Á.‚ ‚ ‚ ‚ €aB„!B€¡B°„!BPà^„!B„!B„!B„!‚ ‚ €è/‚]AAAA„!B„! B„ aB„  àáB„!B„!B„!B‚ ‚ {/‚ tAAAA„!B„! B„ aB„  á/B„!B„!B„!B‚ ‚ {/‚ €ÐAAAA„!B„ hB„ aB„  áxB„!B„!B„!B‚ ‚ {/‚ ‚]AAA„!B„ hB„ aB„  á@ „!B„!B„!B‚ ‚Á/‚ ‚¬AAA,!B„!B„!Bv„!B ~„!xB„!B„!B„ ‚ ‚Á/‚ ‚®uAA,!B„!B´!Bv„!B ~„!@ „!B„!B„ ‚ ‚°A/‚ ‚®ÔAA,!B„!B„!Bb„!A@„!@ „!B„!B„‚ ‚°A/‚ ‚®ÔAA,!B„!B„!B„!!A@„!@ „!B„!B„‚ €ìA/‚ ‚®ÔAA,!B„!B„!B„!1A@„!@ „!B„!B„‚ €ìA/‚ ‚®ÔAA,!B„!B„!B„!@ˆA@„!@ „!B„!B„‚ {A/‚ ‚®ÔAA,!B„!B„!B„!@ˆA@„!@ „!B„!B„‚¸ ‚ ðAAø  ‚ ‚ €"""""""""""""" D ˆˆˆˆ€‚î ‚ ðAAø  ‚ ‚ €""""""""""""""dD ˆˆˆˆ€à‚ ‚ ðAAø  ‚ ‚ €""""""""""""" DD ˆˆˆˆ€9$’I$’I$’I$’Øà‚ ‚ ðAAøÈ ‚ ‚ €""""""""""""" DD ˆˆˆˆ€9$’I$’I$’I$à‚ ‚ ðAAøÈ ‚ ‚ €""""""""""""" DD ˆˆˆˆq9$’I$’I$’I$à‚ ‚ ðAAøÈ ‚ ‚ €"""""""""""""" D ˆˆˆq9$’I$’I$’I$à‚ ‚ ðAAøÈ ‚ ‚ €"""""""""""""""  ˆ€9$’I$’I$’I$à‚ ‚ ðAAøÈ ‚ ‚ €9$’I$’I$’I$’Øà‚ ‚ ðAAøÈ ‚ ‚ €à‚ ‚ ðAAøÈ ‚ ‚ €‚¸ ‚ ðAAøÈ ‚ ‚ €‚ €;‚ ðAAðò ‚ ‚ €„!@œ!¼!B„!B„!„!Bá¼!B„!B„!„!B€0¼!B„!B„!„!B„Ü!Br„!B„!„!B„!¸@B„!B„!